Addendum to "The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph"
نویسندگان
چکیده
In the article “The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph” by Janson [6] it is shown that the minimal weight Wn of a spanning tree in a complete graph Kn with independent, uniformly distributed random weights on the edges has an asymptotic normal distribution. The same holds with exponentially distributed weights with mean 1. The mean converges, as shown in the classical paper by A. Frieze [3], to ζ(3), and the asymptotic variance is σ2/n for a positive constant σ2; more precisely, see [6, Theorem 1], n ( Wn − ζ(3) ) d −→ N(0, σ) as n→∞. The constant σ2 was given in [6] by the complicated expression
منابع مشابه
The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph
The minimal weight of a spanning tree in a complete graph K n with independent, uniformly distributed random weights on the edges, is shown to have an asymptotic normal distribution. The proof uses a functional limit extension of results by Barbour and Pittel on the distribution of the number of tree components of given sizes in a random graph.
متن کاملProviding a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)
The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...
متن کاملProviding a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)
The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 28 شماره
صفحات -
تاریخ انتشار 2006